数字化观察网 - 信息化观察网 - 引领行业改革
菜单导航

大数据时代商业银行信用风险论文

作者: 数字化观察网 发布时间: 2021年04月30日 21:14:36

大数据时代商业银行信用风险论文

  一、大数据时代商业银行信用风险管理SWOT分析

  (一)定性分析

  1.优势分析。商业银行在多年发展中,拥有广大的客户群体,积累了客户基本资料、客户交易、客户存贷款等大量数据。在大数据时代,商业银行凭借其雄厚的资本,可以建立大数据服务器等设备,将这些传统数据与其他来源数据进行整合,数据分析人员通过云计算等技术手段挖掘出有价值的信息,从各个角度分析客户需求以及识别信贷风险,从而有助于商业银行更加科学地评价经营业绩、评估业务风险、配置全行资源,引导银行业务科学健康发展。

  2.劣势分析。在现有的银行交易系统中,客户的身份证、交易流水等大量信息已被银行掌握,但缺少如客户的家庭情况、收入状况、消费习惯、兴趣爱好等其他方面的信息。另外,目前小微企业客户信息以及商业银行的产业链客户信息也比较缺乏,直接影响着银行对这些客户提供金融服务的水平。再者,大数据时代下,需要金融专业人才和数据分析人才相互配合,才能充分挖掘数据价值,但数据分析人员较为匮乏也将成为商业银行的软肋。

  3.机会分析。刚刚进入大数据时代,商业银行应率先构架大数据战略体系,制定大数据发展战略,突破同质性,实施差异化业务发展战略,从而赢得先机。如果大数据获得成功应用,将为银行创造先发竞争优势,使银行决策从“经验依赖”向“数据依据”转化,打造不可复制的核心竞争力。“数据—信息—商业智能”将逐步成为银行定量化、精细化管理的发展路线,数据分析也将成为其风险防控的法宝。

  4.威胁分析。大数据在给商业银行带来前所未有的机遇的同时,也给其带来了诸多威胁,例如大数据存在的风险、网络安全、数据失真等。在大数据开发利用过程中,云计算技术将会得到广泛应用。但是云计算将数据存入云端,而云端往往是由第三方服务器实现存取的,如果第三方将数据泄露,将会给银行带来极大的风险。另外,互联网金融正在颠覆着传统的金融模式,网商具有活跃的交易记录和巨大的金融需求,但商业银行很难开发到这些客户,将给银行带来挑战。

  (二)定量分析

  除了对大数据时代商业银行信用风险管理面临的内外部环境进行定性分析外,还可以进行定量分析。具体思路为:

  ①确定包括优势与劣势、机会和威胁等多于10个的内外部环境因素;

  ②利用主观赋权法、客观赋权法、层次分析法(AHP法)等任一方法确定各因素的权重;

  ③给各个因素打分,分值范围为1到5分,评分越高说明因素越重要;

  ④将各个因素的权重与得分相乘,从而最终计算出各个因素的加权分数;

  ⑤各个因素加权分数计算代数和得出公司的总加权分数,然后根据分数进行判断。某商业银行内外环境分析如附表所示。由附表可以看出,该银行外部机会大于外部威胁,内部优势大于内部劣势,应抓住大数据带来的机遇,充分利用信息技术,更加科学地评估业务风险、配置全行资源,引导银行业务科学健康发展。

  二、基于大数据的商业银行征信系统构建

  目前,我们已经进入了大数据时代,由于大数据包含的信息量大而且非常复杂,传统的系统已不能满足银行新的分析需求,有必要建立一个统一的数据环境,构建大数据的商业银行征信系统,采取新分析算法,搭建大数据跨业务的统一应用平台,从而满足银行精细化管理、差异化服务、提升风险分析能力的需求。

  (一)大数据时代商业银行征信系统概述

  在金融交易安全日益突出的今天,如何迅速、有效地发现各类欺诈行为,对保证商业银行的正常运作和国家人民财产安全都显得十分重要。商业银行征信系统要针对信贷风险防控工作的实际特点,通过客户交易信息以及客户其他信息收集来加强客户信用风险监测。系统总体见附图。附表某商业银行内外环境分析内部环境评分权重加权分外部环境评分权重加权分⑴整体竞争优势明显;30.100.30⑴云计算的快速发展;50.150.75⑵良好的客户群体;50.150.75⑵数据来源多样化;50.251.25⑶资本雄厚,有能力建立大数据库;40.050.20⑶科技发展为数据应用提供支持;40.200.80⑷拥有专业客户人才;30.200.60⑷精准评估业务风险;40.251.00⑸良好的内控环境;50.251.20⑸先入为主的机会;40.150.60优势⑹丰富的风险防控经验;50.251.25机会⑹精细化管理的趋势。40.100.40小计1.004.30小计1.004.80⑴缺乏个人客户基本信息;-30.25-0.75⑴网商的竞争;-50.3-1.50⑵缺乏小微企业基本信息;-30.20-0.60⑵大数据安全风险;-50.25-1.25⑶缺少产业链客户的信息;-40.20-0.80⑶网络安全面临挑战;-30.2-0.60⑷缺乏专业的数据分析人才;-30.10-0.30⑷外部风险事件的影响;-30.15-0.45⑸缺乏非结构化数据收集能力;-50.15-0.75⑸外部风险来源多样化。-30.1-0.30劣势⑹商业运营模式面临变革。-30.10-0.30威胁小计1.00-3.50小计1.00-4.10优势劣势合计0.80机会威胁合计0.70系统将从海量数据中提取出有关联的数据信息,以发现潜在或已知的风险,系统将数据仓库、模型库、知识推理、人机交互四者有机地结合起来,充分发挥数据挖掘的作用,通过建立风险评估模型较好地处理数据资源中存在的模糊性和随机性,在成熟的模式识别技术和智能分析技术的辅助下,对银行业务的全方位、多角度的可靠性分析和风险评估,有助于商业银行实施全面风险管理体系,从而进一步提高融资、贷款、授信等方面的风险评估、监控水平。

  (二)大数据时代商业银行征信系统工作原理

热门标签